Senyawabelerang dioksida jika direaksikan dengan gas oksigen akan menghasilkan senyawa belerang trioksida dengan persamaan reaksi berikut: Bila volume diukur pada suhu dan tekanan yang sama, maka perbandingan volume gas berturut-turut adalah . 1 : 1 : 1. 1 : 2 : 1.
Senyawasenyawa oksida nitrogen mengandung nitrogen dengan komposisi senyawa I, II, dan III berturut-turut adalah 63,64%; 46,67%; dan 36,84%. b. Jika rumus kimia senyawa I adalah N2 O, bagaimanakah r
Persentasegas oksigen berturut-turut pada (I) dan (ll) adalah. - 17475274 friska6871 friska6871 11.09.2018 Biologi Sekolah Menengah Pertama terjawab Persentase gas oksigen berturut-turut pada (I) dan (ll) adalah. a 5,60%dan 0,56% b 5,60%dan 20,90% c 15,90% dan 0,56% d 20,90%dan 5,60% tolong di bantu ya kak 1 Lihat jawaban Iklan Iklan
edHJB. Quipperian, tahukah kamu bahwa John Dalton ternyata tidak hanya merumuskan teori atom Dalton saja? Ya, pada tahun 1803, ilmuwan asal Inggris ini merumuskan sebuah hukum yang disebut hukum perbandingan berganda atau hukum Dalton. Hukum Dalton termasuk salah satu hukum dasar dalam perhitungan Kimia atau stoikiometri. Maka dari itu, jika kamu ingin mahir dalam perhitungan Kimia, kamu perlu mengetahui dan memahami tentang hukum Dalton ini. Lantas, apa itu hukum Dalton? Seperti apa bunyi dan rumus hukum Dalton? Yuk, simak pembahasan lengkapnya berikut ini. Pengertian Hukum Dalton Hukum Dalton adalah hukum yang menyatakan apabila unsur-unsur dapat membentuk beberapa senyawa dan massa salah satu unsur selalu tetap, perbandingan massa unsur yang lain dapat dinyatakan dalam bilangan bulat dan sederhana. Hukum ini dirumuskan oleh John Dalton pada tahun 1803, seorang ilmuwan asal Inggris yang juga dikenal sebagai pencetus teori atom Dalton. Hukum Dalton juga dikenal sebagai hukum perbandingan berganda atau hukum kelipatan berganda. Hukum ini merupakan salah satu hukum dasar Kimia, serta dilandasi oleh hukum Proust hukum perbandingan tetap dan hukum Lavoisier hukum kekekalan massa. Bunyi Hukum Dalton Adapun bunyi hukum Dalton adalah sebagai berikut. Jika dua jenis unsur bergabung membentuk lebih dari satu senyawa, dan jika massa-massa salah satu unsur dalam senyawa-senyawa tersebut sama, sedangkan massa-massa unsur lainnya berbeda, maka perbandingan massa unsur lainnya dalam senyawa-senyawa tersebut merupakan bilangan bulat dan sederhana Sejarah Hukum Dalton Hukum Dalton dirumuskan oleh seorang ilmuwan asal Inggris bernama John Dalton pada tahun 1803. Hukum ini dilandasi oleh dua hukum sebelumnya, yaitu hukum Proust hukum perbandingan tetap dan hukum Lavoisier hukum kekekalan massa. Dalton melakukan percobaan dengan membandingkan massa unsur-unsur pada beberapa senyawa. Senyawa yang digunakannya adalah karbon monoksida CO dan karbon dioksida CO2. Dari perbandingan kedua senyawa ini, diperoleh hasil sebagai berikut. SenyawaMassa CMassa OMassa C Massa OCO1,2 gram1,6 gram3 4CO21,2 gram3,2 gram3 8 Jika massa karbon di dalam senyawa CO dan CO2 sama, maka massa oksigen di dalamnya akan memenuhi perbandingan tertentu. Perbandingan massa oksigen yang diperoleh Dalton pada senyawa CO dan CO2 adalah 4 8. Berdasarkan percobaannya ini, Dalton pun merumuskan hukumnya yang dikenal sebagai hukum Dalton atau hukum perbandingan berganda yang berbunyi “Jika dua jenis unsur bergabung membentuk lebih dari satu senyawa, dan jika massa-massa salah satu unsur dalam senyawa-senyawa tersebut sama, sedangkan massa-massa unsur lainnya berbeda, maka perbandingan massa unsur lainnya dalam senyawa-senyawa tersebut merupakan bilangan bulat dan sederhana” Ciri-ciri Hukum Dalton Berikut adalah ciri-ciri hukum Dalton yang perlu kamu ketahui. Memiliki nama lain, yaitu perbandingan berganda atau hukum kelipatan berganda. Dilandasi oleh hukum Proust hukum perbandingan tetap dan hukum Lavoisier hukum kekekalan massa. Dirumuskan oleh John Dalton. Penerapan Hukum Dalton Dengan adanya hukum Dalton, memudahkan para ilmuwan untuk menentukan perbandingan unsur-unsur yang bereaksi membentuk suatu senyawa. Contohnya, menentukan perbandingan unsur nitrogen dan oksigen di mana apabila kedua unsur ini direaksikan akan membentuk beberapa senyawa, seperti NO dan NO2. Kedua senyawa tersebut sama-sama terbentuk dari unsur nitrogen dan oksigen. Namun, rasio perbandingan massa yang dimiliki berbeda. Misalnya, pada senyawa NO. Rasio perbandingan massanya adalah 28 32 atau 14 16 yang kalau menurut hukum perbandingan berganda hukum Dalton dapat diubah menjadi bilangan bulat. Dengan begitu, perbandingan unsur nitrogen dan oksigen pada senyawa NO adalah 1 1. Sementara itu, pada senyawa NO2, rasio perbandingan unsur nitrogen dan oksigen adalah 1 2. Rumus Hukum Dalton Dalam hukum Dalton, rumus yang digunakan untuk mencari massa suatu unsur adalah dengan membandingkannya dengan massa unsur yang lain. Untuk lebih jelasnya, perhatikan contoh soal berikut ini. Unsur fosfor dan oksigen yang direaksikan membentuk dua jenis senyawa. Dalam 55 gram senyawa I terdapat 31 gram fosfor dan 71 gram senyawa II mengandung 40 gram oksigen. Apakah senyawa tersebut termasuk ke dalam hukum Dalton? Pembahasan Massa FosforMassa OksigenMassa SenyawaSenyawa I31 gram?55 gramSenyawa II?40 gram71 gram Massa oksigen pada senyawa I = 55 − 31 = 24 Massa fosfor pada senyawa II = 71 − 40 = 31 Perbandingan massa fosfor pada senyawa I dan II adalah = 31 31, sama-sama dibagi dengan 31 sehingga menjadi 1 1. Perbandingan oksigen pada senyawa I dan II adalah = 24 40 sama-sama dibagi dengan 8 sehingga menjadi 3 5 Dari hasil perhitungan di atas, maka perbandingan oksigen dan fosfor pada senyawa I dan II adalah 1 1 dan 3 5 yang mana merupakan bilangan bulat dan sederhana. Dengan kata lain, senyawa tersebut termasuk dalam hukum Dalton. Contoh Soal Hukum Dalton dan Pembahasannya Agar semakin paham, berikut adalah contoh soal hukum Dalton beserta pembahasannya. Contoh 1 Unsur X yang direaksikan dengan unsur Y dapat membentuk senyawa I dan senyawa II. Senyawa I mengandung 30 gram unsur X dan 160 gram unsur Y, sedangkan senyawa II mengandung 90 gram unsur X dan 240 gram unsur Y. Berapakah perbandingan massa unsur Y dalam senyawa I dan II? SenyawaMassa XMassa YMassa X Massa YI30 gram160 gram3 16II90 gram240 gram3 8 Berdasarkan tabel di atas, maka perbandingan massa unsur Y dalam senyawa I dan II adalah 16 8 atau 2 1. Contoh 2 Unsur belerang S dan oksigen O membentuk dua jenis senyawa. Kadar belerang dalam senyawa I adalah 50% dan pada senyawa II adalah 40%. Apakah hukum perbandingan berganda berlaku untuk senyawa tersebut? Pembahasan Senyawa I mengandung 50% unsur belerang, berarti massa oksigennya adalah 50%. Massa S O dalam senyawa I = 50 50 = 1 1 Senyawa II mengandung 40% unsur belerang, berarti massa oksigennya adalah 60%. Massa S O dalam senyawa II = 40 60 = 1 1,5 Jika massa belerang dalam kedua senyawa adalah sama, maka perbandingan massa oksigen pada senyawa I dan II adalah 1 1,5 atau 2 3. Angka perbandingan merupakan bilangan bulat dan sederhana. Itu artinya, kedua senyawa tersebut memenuhi hukum perbandingan berganda. Contoh 3 Ketika unsur A dan B direaksikan, maka akan terbentuk dua macam senyawa. Senyawa I mengandung 40% unsur A dan senyawa II mengandung 25% unsur A. Tentukan perbandingan massa unsur B sehingga mengikuti hukum perbandingan berganda hukum Dalton. Pembahasan Senyawa% A% B = 100 – % AI40%100 – 40 = 60%II25%100 – 25 = 75% Agar persentase unsur A pada kedua senyawa sama, maka senyawa I dikalikan dengan faktor 2,5 dan senyawa II dikalikan dengan faktor 4 sehingga diperoleh perbandingan massa unsur A dan B sebagai berikut. SenyawaMassa A gramMassa B gramI40 x 2,5 = 10060 x 2,5 = 150II25 x 4 = 10075 x 4 = 300 Jadi perbandingan massa B pada senyawa I dan massa B pada senyawa II adalah 150 300 = 1 2. Nah, itu dia pembahasan mengenai hukum Dalton dalam mata pelajaran Kimia. Semoga bermanfaat, ya!
Pada postingan terakhir saya, sudah dijelaskan bagaimana mendapatkan nilai udara teoritis pada pembakaran di boiler, mulai dari bagaimana mengetahui udara stoikiometrik, AFR actual hingga oxygen total yang dibutuhkan batubara hingga dapat terbakar sempurna. Kali ini, kita akan membahas berapakah oxygen content pada flue gas dari total udara teoritis yang kita dapatkan pada postingan sebelumnya Mengetahui nilai Udara Stoikiometrik, Air Fuel Ratio AFR untuk menentukan udara teoritis pembakaran batubara LinkedIn agar dapat diketahui apakah parameter oxygen content pada flue gas sudah sesuai dengan pola operasi optimum atau justru nilai oxygen content diluar dari range aman pengoperasian content sendirinya adalah merupakan presentase kandungan oksigen dalam flue gas dari total product senyawa hasil pembakaran batubara. Kita bisa lihat kembali ultimate analysis data untuk mengetahui presentase nilai volatile dan carbon yang terkandung dalam batubara sehingga didapat product tiap senyawa hydrocarbon, maka dengan berbekal itu kita dapat mengetahui kadar kandungan oksigen pada flue gas dengan mengacu pada perhitungan udara teoritis pembakaran. Adapun oxygen content mempunyai 2 jenis kondisi yaitu ;Kandungan presentase volume oksigen basah, dimana kandungan H2O secara volumetric menjadi menjadi acuan nilai pengurang presentase O2 content pada flue gasKandungan presentase volume oksigen kering, dimana kandungan H2O secara volumetric pada flue gas diabaikan. Biasanya sensing O2 content yang terinstall merupakan sensor monitoring dry volume keadaan kering yang artinya bahwa kandungan air atau tingkat kelembaban pada flue gas tidak mempengaruhi nilai O2 content secara massiveBeberapa powerplant memiliki parameter pengukuran oksigen content pada 2 titik jalur flue gas, tentunya ini sangat membantu operator membandingkan nilai oxygen content actual pada flue gas apabila salah satu sensing mengindikasikan error atau justru mengindikasikan case lain yang terjadi secara realtime. Presentase normal oxygen content pada flue gas sendiri adalah berkisar 2-6% bergantung pada hasil uji commissioning maupun performance test rutin yang sebab itu operator diwajibkan memonitoring nilai Oxygen content agar tetap pada range aman operasi, karena biasanya presentase excess air dalam pembakaran tidak diketahui didalam system kontrol, sehingga apabila tidak dapat dikendalikan maka akan terjadi ketidaksinambungan pembakaran yang berpotensi mengurangi keandalan dan efisiensi pembangkit. Beberapa permasalahan yang muncul akibat presentase oksigen content yang terlalu rendah dibawah range aman operasi adalah sebagai berikutKenaikan kadar CO pada bottom ash yang disebabkan oleh minimnya udara pembakaran Penurunan nilai CO2 pada flue gas, dimana CO2 merupakan indicator utama karbon terbakar secara sempurnaPenurunan main steam pressure dan main steam temperature akibat pembakaran carbon yang tidak sempurna yang kemudian berdampak pada penurunan temperature furnace pembakaranFrekuensi drain slugging bottom ash meningkat, disebabkan oleh kenaikan pressure windbox yang mengindikasikan batubara tidak terbakar sempurna. Hal ini terjadi karena laju perambatan panas < laju aliran bahan bakar batubara yang kemudian akan meningkatkan losses unburn carbon yang diikuti heat losses pada proses drain bottom ashSedangkan apabila presentase oksigen content terlalu tinggi diluar Batasan operasi maka akan berdampak sebagai berikut Kenaikan nilai CO pada flue gas, yang disebabkan residence time carbon yang singkat Kenaikan FGET Flue Gas Exit TemperaturePressure windbox mengalami kecenderungan penurunan nilai yang disebabkan material halus fine carbon, fine sand yang ikut terangkat dan lolos melewati centrifugal separator cyclone Berikut grafik hubungan antara excess air /fuel terhadap perubahan nilai CO dan CO2 pada flue gasDiliat dari grafik diatas, disimpulkan bahwa efisiensi optimum pembakaran terjadi pada udara berlebih excess air, tentunya presentase ini disesuaikan dengan kandungan batubara dari hasil uji ultimate analysis sehingga dapat ditentukan presentase mengetahui nilai presentase oxygen content atau kandungan oksigen dalam flue gas melalui perhitungan udara teoritis mempunyai beberapa tahapan penyelesaian. Untuk memudahkan, kita dapat memakai nilai perhitungan udara teoritis pada postingan sebelumnya. Berikut nilai yang didapat pada postingan sebelumnya AFR actual = kgair/kgcoal setelah dikoreksi dari nilai awal kgair/kgcoal hahaha… Oxygen in Air atau kandungan oksigen dalam udara = kgO2/kgairSehingga Actual Oxygen supplied adalah Actual Oxygen Supplied AFR actual x Oxygen In Air= kgair/kgcoal x kgO2/kgair= kgO2/kgcoalJadi suplai actual oksigen dalam perhitungan udara teoritis adalah sebesar kgO2/kgcoal. Dengan nilai ini kita dapat menentukan suplai actual nitrogen dalam perhitungan udara teoritis dengan formula sebagai berikut Actual Nitrogen Supplied AFR actual - Actual Oxygen Supplied= kgair/kgcoal - kgO2/kgcoal= kgN2/kgcoalDengan perhitungan diatas kita mengetahui bahwa komposisi udara suplai actual yang dibutuhkan adalah dan $.56kgN2/kgcoalSelanjutnya, kita tentukan komposisi nilai dari product pembakaran dari masing-masing senyawa yang terkandung dalam batubara yaitu CO2,SO2, dan H2O dan tentunya product-product senyawa tersebut disesuaikan dengan data ultimate analysis pada postingan sebelumnya. Berikut formulasi perhitungan untuk mengetahui nilai product requiredProduct required kg/kgcoal= Kandungan senyawa % x totalmol Wt required/ mol senyawa , Contoh product CO2 = %C x 44kg/12kg= x 44kg/12kg= kgCO2/kgcoalPerhitungan diatas, berlaku terhadap seluruh product pembakaran dari senyawa lain lihat postingan sebelumnyaBerikut formulasi untuk mengetahui nilai oksigen pada flue gas adalah Product O2 kgO2/kgcoal = Actual Oxygen Supplied – oxygen required for a kilo coal= kgO2/kgcoal - kgO2/kg coal= kgO2/kgcoalSedangkan formulasi untuk mencari nilai product N2 pada flue gas, dapat menggunakan rumus sebagai berikut = Actual Nitrogen Supplied + %N2 lihat coal ultimate analysis= + kgN2/kgcoalKemudian jika seluruh nilai-nilai diatas telah diketahui, maka kita dapat menghitung nilai presentase volume product yang ada di flue gas baik dengan kondisi kering maupun dengan tingkat kelembaban yang tinggi. Berikut formula untuk mengetahui nilai %volume dry condition adalah %volume dry condition kgmol/kgcoal/total dry condition x 100Noted formulasi perhitungan % volume wet condition serupa, dengan penyesuaian perbandingan menggunakan “summation with H2OBerikut tabel pembenaran composition of flue gas DARI SEMUA PERHITUNGAN DIATASJadi presentase nilai O2 content atau kandungan oksigen pada flue gas adalah sebesar dengan presentase excess air yang diketahui sebelumnya sebesar 20%. Dimana presentase kandungan oksigen ini merupakan kombinasi dari presentase product senyawa-senyawa lain dalam flue gasDemikianlah tahapan-tahapan penyelesaian untuk mendapatkan nilai kandungan oksigen atau Oxygen content pada flue gas dengan mengacu kepada perhitungan udara teoritis, Semoga bermanfaat dan dapat diaplikasikan sebagai bahan pembelajaran. Apabila ada koreksi dan pertanyaan bisa disampaikan lewat kolom komentar. Terimakasih
persentase gas oksigen berturut turut pada i dan ii adalah